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SUMMARY 

This paper presents results of the numerical study of a piston-driven unsteady flow in a pipe with sudden 
expansion. The piston closes the larger-diameter pipe and moves between two limiting positions with strong 
acceleration or deceleration at the beginning and end of each stroke and constant velocity in between. The piston 
velocity in the exhaust stroke is about four times higher than in the intake stroke. Periodic piston movement in this 
fashion creates a complex unsteady flow bctween the piston head and the plane of sudden expansion. Thc 
numerical method is implicit and of finite volume type, using a moving grid and a collocated arrangement of 
variables. Second-order spatial discretization, fine grids and a multigrid solution method were used to ensure high 
accuracy and good efficiency. Spatial and temporal discretization errors were of the order of 1% and 0.1% 
respectively. The features of the flow are discussed and the velocity profiles are compared with experimental data, 
showing good qualitative and quantitative agreement. 
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INTRODUCTION 

Accurate numerical solutions of practical flow problems require the use of fine numerical grids. 
Unsteady separated flows are especially demanding in this respect. In such flows the time-dependent 
movement of vortices makes practices such as grid contraction and local refinement not very useful: 
accurate solutions can only be achieved by using globally fine grids. With standard iterative methods 
this approach soon beomes prohibitively expensive, as the computing times vary proportionally with 
the square of the number of grid nodes. 

During the last 10 years the multigrid technique has evolved as a powerful tool for accelerating the 
convergence of iterative methods. For linear problems, multigrid methods are asymptotically optimal, 
i.e. the computing times are directly proportional to the number of grid points. Brandt and Dinar,' 
Vanka? W i t t ~ m , ~  Barcus et al.4 and Hortmann et ~ l . , ~  among others, have shown that these features 
are also valid for the solution of non-linear problems, namely the incompressible Navier-Stokes 

CCC 027 1-2091 /95/030237-15 
0 1995 by John Wiley & Sons, Ltd. 

Received June I994 
Revised January 1995 



238 H. STROLL ETAL.  

equations. For steady laminar flow problems, computing time reductions of up to two orders of 
magnitudes were reported for grids with 104-105 grid points. 

Unsteady flows-especially those exhibiting periodicity-ofien require very fine numerical grids for 
an adequate spatial resolution of vortices, but allow for larger time steps or lower-order temporal 
discretization. For such cases, explicit schemes are inefficient, since the limiting time step size is 
proportional to the square of the mesh spacing. Such methods thus become extremely restrictive when 
very fine resolution is required. Implicit schemes, on the other hand, are less prohibitive regarding the 
time step size, but require outer iterations within each time step to solve a non-linear system of 
equations. The effectiveness of an implicit method is then crucially dependent on the efficiency of the 
iterative solution scheme. 

In the present paper the efficiency of a fully implicit solution method coupled with a multigrid outer 
iteration scheme is demonstrated by solving unsteady flow problems where spatial resolution is the 
limiting factor for accuracy. An extension of the previously reported solution method for moving 

is used to predict unsteady piston-driven flows in a pipe with sudden expansion. The solution 
method is of finite volume type and uses a collocated variable arrangement. The convection, diffusion 
and source terms are discretized using second-order central difference approximations. Time 
discretization is first-order fully implicit (Euler scheme). Pressurevelocity coupling is achieved via the 
SIMPLE algorithm.8 A multigrid method based on a full approximation scheme (FAS) is implemented 
to accelerate the outer iterations within each time step,5 while the linear equations are relaxed on all 
grid levels by the ILU solver of Stone,' which is based on incomplete lower-upper decomposition. 
Estimation of spatial and temporal discretization errors is used as guidance in selecting grid and time 
step sizes. 

In the next section the solution method is briefly outlined; more details can be found in References 
5-7. This is followed by a description of the flow problem under investigation, a demonstration of the 
efficiency of the solution method and an error analysis. Finally, results of calculations are presented 
and compared with experimental data. 

NUMERICAL METHOD 

The flow of an incompressible fluid in a domain with moving boundaries is governed by the 
conservation equations for space, mass and momentum, which for an incompressible Newtonian fluid 
with constant properties read7 

where p represents the fluid density, p is the dynamic viscosity, v is the fluid velocity vector with 
Carteisn or cylindrial components ui, vb is the velocity of the control volume boundary, bi is the body 
force in the ith co-ordinate direction, R is the volume and S is the surface of the control volume. When 
using cylindrical co-ordinates for two-dimensional studies of pipe flows, the body force contains-in 
addition to the pressure gradient in the corresponding co-ordinate direction-the term puJ? in the 
equation for the radial velocity component. 

The above equations are discretized on rectangular control volumes (CVs); see Figure 1. In the case 
to be studied, the grid moves only in the x-direction (in one part of the solution domain). The position 
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Figure 1, Typical control volume. and notation used 

of the grid lines is specified as a function of time, so that at any time t,, the co-ordinates xi and y, are 
known for both t ,  and tnP1.  The space conservation law (1) then reduces to' (see Figure 1) 

Here, as well as in other rate-of-change terms, first-order fully implicit time discretization is 
employed. The same expressions are valid for both Cartesian and cylindrical geometries; in the former 
case r =  1 and in the latter case r = y  The mass fluxes through the east and north CV faces are 
calculated as 

p(v - vb) - ndS = [py~Jx; -xi- I ) ] ~ .  (6) 

Note that the grid velocity vector has only the x-component in equation (6), otherwise an additional 
term similar to that in equation (5) would result for the north side too. Also note that in the part of the 
solution domain with fixed grid, $-' = <, so that the contribution to the mass flux through the east 
CV face from the moving grid disappears and the usual expression for fixed grids results; cf. equation 
(6).  In the above and all other similar expressions, surface integrals are approximated by assuming that 
the variable values at the centre of the CV face are the mean values over the whole face. This is second- 
order approximation provided that the values at the CV face centre (which are not known) are 
expressed through the nodal values by means of an approximation of at least second order. In this 
work, central differences (linear interpolation) are used throughout, thus resulting in overall spatial 
discretization of second order. Convection fluxes of the momentum components are evaluated as e.g. 

F ; ~  = 5, pu;(v - vb) n u  = hjZeUi,e. (7) 

This is the simplest linearization of the non-linear convection terms in the Navier-Stokes equations 
(Picard iteration scheme). The cell face values are obtained by linear interpolation of the immediate 
neighbour values. This approximation is implemented using the 'deferred correction' approach. lo 

Diffusion fluxes are approximated as 

Volume integrals are approximated by assuming that the value of the integrand at the CV centre 
represents the mean value over the whole CV; these values are then simply multiplied by the cell 
volume AR. The rate-of-change term is approximated as 
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When all terms are assembled so that implicit parts are on the left-hand side and explicit parts on the 
right-hand side of the balance equation for each CV, an algebraic equation of the form 

nb 

results, where the index ‘nb’ runs over the four intermediate neighbours E, W, N and S; see Figure 1. 
For the solution domain as a whole and a structured grid a matrix equation with diagonal structure 
results, which is solved for given coefficients by the iterative solver of Stone.’ 

Adopting the SIMPLE algorithm for pressure-velocity coupling, the continuity equation is 
transformed into a pressure correction equation,’ which has the same discretized form as equation (10). 
The source term of this equation is the mass imbalance after solving the momentum equations plus the 
rate of change due to volume change: 

(pan)” - (pan)”-’ 
At Qm = + rire + rir, + rir, + rirs. 

At boundary cell faces the fluxes have to be either specified or calculated using specified boundary 
values of the dependent variable and one-sided differences for gradient approximations. At walls the 
convection fluxes in the momentum equations are equal to zero. The diffusion flux of the tangential 
velocity component is calculated at walls using the prescribed wall velocity (no-slip condition) and a 
linear profile assumption. For the normal velocity component the diffusion flux at walls is set to zero, 
since the normal stress is zero there. In axisymmetric geometries all fluxes are equal to zero at the 
symmetry axis, since the area of the cell face is equal to zero. In plane geometries the mass fluxes and 
convection fluxes in the momentum equations are equal to zero at symmetry planes. The diffusion flux 
of the tangential velocity component is also equal to zero there, since the shear stress vanishes in a 
symmetry plane. The diffusion flux of the normal velocity component is calculated at symmetry planes 
using a zero boundary value of the normal velocity and a linear profiie assumption. At the inlet the 
mass fluxes and both velocity components are prescribed. The diffusion fluxes are calculated using 
specified velocity values and a linear profile assumption. At the outlet the velocities are extrapolated 
(usually using a zero-gradient assumption if the outlet is far downstream). The diffusion fluxes are 
usually neglected at the outlet. 

For the pressure correction equation the specified mass flux through the boundary cell face implies 
zero gradient of the pressure correction in the normal direction. Even at the outlet the mass fluxes 
(calculated using extrapolated velocities and corrected to satisfy global mass conservation) are frozen 
within one SIMPLE iteration, so that the pressure correction equation has Neumann conditions at all 
boundaries. The sum of source terms then has to be equal to zero (which is ensured by the above- 
mentioned correction at the outlet) and the solution is unique only in terms of gradients, which is all 
that is needed. 

Sequential solution of the equations for u, and pressure correction is repeated until the sum of the 
absolute residuals (calculated with the new coefficients and prevailing solution) over all CVs for each 
variable has fallen by at least three orders of magnitude. One inner iteration in the solver is performed 
for the velocity components per outer iteration (coefficient update) and up to 10 inner iterations for the 
pressure correction equation; the latter requires more iterations since it has Neumann boundary 
conditions along all boundaries and hence converges more slowly.’ 

In order to reduce the number of outer iterations per time step, the FAS multigrid algorithm is 
employed. The solution for a new time step is started on the finest grid using variable values from the 
previous time step as the initial guess. After three to five outer iterations the solution process is 
transferred to the next coarser grid, where equations for the full approximations of the fine grid 
solution are s01ved.~ This sequence is repeated until the coarest grid is reached; the process is then 
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repeated in reversed order p-cycle). The coarse grids produce a correction for the fine grid solution if 
the residuals on the finest grid are non-zero. Full details of the algorithm are available in Reference 1 1. 

In the next section the test case and the boundary conditions are presented, together with some 
details of the calculation. 

TEST CASE AND ACCURACY ANALYSIS 

The geometry and dimensions of the solution domain for the test case studied here are shown in Figure 
2. The flow is induced by the piston movement between the minimum and maximum clearances xp,min 
and x,,,,, respectively. In the intake stroke the piston accelerates strongly and within 0.05 s reaches a 
velocity of 6.22 mm sC1, which remains constant until 0.05 s before top dead centre (TDC). In the 
exhaust stroke the piston accelerates even more strongly and after 0.18 s reaches its maximum velocity 
of - 26.5 mm s - ', which remains constant until 0.18 s before bottom dead centre (BDC), where 
deceleration starts. The whole cycle lasts 3.8 s. The piston velocity Up (mm s - ') as a function of time 
t (s) can be expressed as follows: 

up = 

These relations approximate closely the piston velocity recorded in the experiments of Durst et al. 
The Reynolds numbers in the intake and exhaust strokes (based on the larger pipe diameter) are 72 and 
306 respectively, yielding laminix flow conditions. Experiments were repeated periodically. The 
calculations were performed over three full cycles. 

In the acceleratioddeceleration phase of the intake stroke the time step size varies in the form of a 
geometrical series from 0.0001 to 0.005 s. During the phase of constant velocity the time step size 
varies between 0.005 and 0.02 s. In the acceleratioddeceleration phase of the exhaust stroke the time 
step size varies between 0.000 I and 0.002 s. The time step is kept constant at At = 0.002 s during the 
phase of constant exhaust velocity. These time step sizes ensure that the Courant number always stays 
below unity on the finest grid. The analysis of the time discretization errors showed that these time 
steps were adequate for a sufficiently accurate resolution of the unsteady fluid motion. 

The velocity at the inlet to the small pipe is adjusted in each time step to satisfy global mass 
conservation: the volumetric flow through the inlet cross-section must equal the volume change in the 
large pipe due to piston displacement, since the fluid is incompressible. In the first cycle a block profile 
is specified at the inlet. During the exhaust stroke the velocity is extrapolated to the outlet boundary 
and corrected to obey global mass conservation. Since the flow in the small-diameter pipe is fully 
developed up to about one diameter before the sudden expansion, extrapolation is used in the intake 

- 

Figure 2. Geometry of solution domain: D = 45 mm, d= 19 mm, a = 100 mm 
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and exhaust strokes in all subsequent cycles. The flow is found to repeat from the second cycle 
onwards. 

A sequence of four systematically refined non-uniform grids with 32 x 10, 64 x 20, 128 x 40 and 
256 x 80 CVs is used. One coarser grid CV is made of four finer grid CVs. Calculations were 
performed for the first intake stroke using three and four grid levels and the same time step sizes. By 
comparing the solutions from the two finest grids at given times, one can estimate spatial discretization 
errors (we assume that the temporal discretization error is of the same order on both grids, since the 
time step is the same). For a second-order scheme and sufficiently fine grids the discretization error on 
the finer grid is approximately equal to one-third of the difference between the two solutions. In this 
way the spatial discretization errors were estimated for several piston positions. Figure 3 shows 
contours of constant error for normalized piston displacements sp' of 0.13, 0.34 and 0.89 (sp = 0 at 
BDC and sp = 1 at TDC; superscripts '+' and ' - ' denote intake and exhaust strokes respectively). 
Regions in which the error is higher than 3% of the average inlet velocity are shaded. These figures 
clearly indicate that the errors are generated at the sudden expansion in the early stage of the stroke and 
are then convected downstream. The peaks in the discretization errors correspond to regions of high 
change in velocity gradients, as will become apparent from velocity profiles and streamline plots to be 
shown later. 

Time discretization errors can be estimated in a similar way by performing calculations on the same 
grid but using systematically refined time steps. Here the calculations were done on the finest grid up 
to a piston displacement s: = 0.1 using constant time steps of 0.002, 0.001, 0.0005 and 0.00025 s. 
From the difference in the solutions at the same piston position obtained with consecutive time steps 
the expected behaviour of a first-order time discretization scheme was confirmed: the error was 
reducing by a factor of two when the time step was halved. The error with the smaller time step is thus 

Figure 3. Distribution of spatial discretization error for different piston locations during intake stroke: (a) s:=O.11; (b) s,' = 0.30; 
(c)s,' = 0.92 (shaded regions are where error is larger than 3% of mean inlet velocity) 
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approximately equal to the difference between the two solutions. The analysis showed that the temporal 
discretization errors were of the order of 0.1% for the time step size chosen for the calculation of the 
whole cycle, which is an order of magnitude lower than the spatial discretization errors. This justifies 
the choice of a first-order implicit scheme for temporal discretization. 

For the chosen finest grid and time steps, calculations were performed in parallel with the single-grid 
(SG) and multigrid (MG) algorithms up to s: = 0.1. For the first 50 time steps, calculations were also 
performed on the next finer grid with 512 x 160 CVs in order to test the efficiency of the multigrid 
algorithm. Table I gives the computing times on a Cyber 995E computer for the first and 22nd time 
steps for both methods. The computing time on the fifth grid for the SG version was estimated by 
performing 200 outer iterations and then extrapolating, assuming a constant convergence rate. For all 
time steps the MG method required one-twentieth to one-fiftieth of the time required by the SG 
method. 

In order to illustrate why the MG method is more efficient, the convergence error (the difference 
between the converged solution Sor a given time step and the intermediate solution after a certain 
number of outer iterations) was evaluated and plotted in Figures 4 and 5. Figure 4 shows convergence 
errors for the axial velocity component after 10, 100, 400 and 800 outer iterations on the finest grid 
when the SG algorithm is used. The spatial distribution of the error shows one long-wave component 
and some short-wave oscillations at the comer of the sudden expansion. Both the long-wave and short- 
wave components are visible even after 400 outer iterations; only after 800 iterations is the error 
reduced everywhere below the specified level. Figure 5 shows the same information for the MG 
method (note that the scale is not the same in each plot). After the third outer iteration on the finest 
grid, one V-cycle through all grids is performed. The correction for the fine grid solution calculated on 
coarser grids eliminates the long-wave error component almost completely, as can be seen from the 
error plot after the fourth iteration on the finest grid. Only some short-wave noise, mostly resulting 
from interpolation errors, remains. After one more V-cycle is performed, only a small error in the plane 
of sudden expansion remains (see the error after the eighth iteration in Figure 5). Finally, after the third 
V-cycle (after the 12th iteration on the finest grid) the iteration error is as small as in the single-grid 
method after 800 iterations. This is the well-known feature of multigrid iterative methods for linear 
problems, which apparently applies also to outer iterations for coupled equation systems. 

With the MG method, on average about 10-15 outer iterations were performed per time step. Within 
each outer iteration, only one inner iteration with Stone’s solver was performed for the velocity 
components and five to 10 for the pressure correction. At the end of each time step the mass 
conservation equation and the non-linear momentum equations were satisfied to within four most 
significant digits. 

Table I. Computing times for single-grid and multigrid solution methods on a Cyber 995E computer 
~~ 

Time Solution Computing time for various grids (s) 
steD method 

32 x 10 64 x 20 128 x 40 256 x 80 512 x 160 

1 SG 1.3 7.3 268.0 3413.9 2000000* 
MG 1.3 3.8 14.8 66.8 305.5 

SG 0.8 1.8 108.2 1351.3 60000* 
MG 0.8 1.3 9.1 49.8 232.4 

22 

* Estimated values 
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Figure 4. Convergence error for axial velocity and SG algorithm after various numbers of outer iterations during first time step 
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Figure 5 .  Convergence error for axial velocity and MG algorithm after various numbers of outer iterations within one time step 
(percentage of mean inlet velocity) 
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RESULTS AND COMPARISON WITH EXPERIMENT 

Having ensured satisfactory numerical accuracy of the results, calculations were performed for three 
cycles of intake and exhaust strokes in a configuration with minimum and maximum piston 
displacements of 21 and 41 mm respectively. Figure 6 shows streamlines at some piston positions 
within the second cycle. The third cycle is identical with the second one, while the first one differs in 
the intake and first half of the exhaust stroke. At sP+ = 0.12 the vortex generated during the exhaust 
stroke has almost disappeared and a new vortex is generated behind the sudden expansion. This vortex 
grows in strength and size; its centre travels with approximately doubled piston velocity towards the 
piston heat. At TDC it occupies the whole cylinder. A special feature of the flow is an oblique wave in 
the streamline pattern behind the primary vortex, which can be seen in the plots for sp' = 0.12 and 0.30 
and which did not exist in the first cycle. This might be the first sign of instability, which was observed 
by the experimenters for intake velocities higher than 7 mm s - and which caused cycle-to-cycle 
variations and three-dimensionality of the flow." The source of this phenomenon lies in the sudden 
suction of the central vortex which occupies the central part of the cylinder at the end of the exhaust 
stroke. The flow in the small pipe quickly becomes fully developed again when the piston achieves its 
constant speed during the intake stroke, as indicated by the parallel streamlines in Figures 6(a)-6(c). 
The areas of largest discretization errors coincide with the position of the waves; see Figure 3. It is also 
interesting to note that the big vortex at the end of the intake stroke completely disappears at s; = 0.34 
in the exhaust stroke. Thereafter two new vortices are created; see Figure 6(g). The reason for this is 
that the linear motion of the piston head is displacing more volume at a larger radius and the fluid from 
the outer region has to be accelerated to enter the small-diameter pipe. When the piston comes close to 
the plane of sudden expansion, the streamline curvature and acceleration creates a radial pressure 
gradient which causes fluid in the centreline region to recirculate. At this stage a recirculation is also 

Figure 6. Streamlines during intake and exhaust strokes in second cycle at different piston positions (initial piston clearance 
21 &, stroke 20 mm): (a) 8,' = 0.12; (b) s: := 0.30; (c) s,' = 0.78; (d) s,' = 1 .OO; (e) s, = 0.99; (0 s; = 0.34; {g) s; = 0.05; (h) 

s; = 0.00. 
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created in the small-diameter pipe owing to the contraction of the jet-like flow in the sudden 
constriction area; see Figure 6(g). 

This flow pattern is not in all details representative of all piston-driven flows, although the main 
features remain the same. In the case of a larger clearance at BDC (minimum piston displacement 
42 mm, maximum 60 mm) the central vortex does not disappear but remains attached to the symmetry 
line during the whole exhaust stroke; see Figures 7(f)-7(i). During the intake stroke this vortex is lifted 
from the symmetry line by the sucked-in fluid and persists until spf M 0.5; see Figure 7(c). The wave in 
the streamline pattern is present in this case too, as can be seen from Figures 7(a)-7(c). At sp’ = 0.01 
one can see the leftovers of the small-pipe vortex from the end of the exhaust stroke being washed 
away, as well as the build-up of waves shortly before the sudden expansion. 

The numerical solutions were found to describe these complex flows qualitatively and quantitatively 
correctly. In Figure 8 the computed and measured axial and radial velocities are compared at various 
radial cross-sections for spf = 0.69235 in the intake stroke. At this stage a large vortex is present in the 
outer region of the cylinder; see Figures 6(b) and 6(c). All features of the velocity profiles, including 
the inflection points, are correctly predicted. Only the maximum negative axial velocity is appreciably 
underpredicted between x=O.O2 and 0.03 m. The small area of the peak velocity lies in the region 
where the discretization error was predicted to be above 1%; locally larger errors are possible, so that 
some improvement in peak resolution could be expected after further grid refinement. Another reason 
for disagreement might lie in experimental uncertainty or flow asymmetry, as suggested by 
disturbances in the measured data at the symmetry line in the profiles at x = 0.026 and 0.029 m; see 
Figure 8. 

In Figure 9 the computed and measured axial and radial velocities are compared at various radial 
cross-sections for s; = 0.2938 in the exhaust stroke. At this stage the central vortex at the symmetry 

Figure 7. Streamlines during intake and exhaust strokes in second cycle at different piston positions (initial piston clearance 
42 mm,stroke 18 mm): ( a ) s ~ = 0 ~ 0 1 ; ( b ) s ~ = 0 ~ 1 0 ; ( ~ ) ~ ~ = 0 ~ 4 9 ; ( d ) s ~ = 0 ~ 7 4 ; ( e ) s ~ = 0 ~ 9 4 ; ( f ) s ~ = 1 ~ 0 0 ; ( g ) s ~ = 0 ~ 8 1 ; ( h )  

s; = 622; (i) s; = 0.00. 
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Figure 8. Comparison of computed and measured profiles of (a) axial and (b) radial velocity components for intake stroke of first 
cycle and piston position xp = 34.847 mm (sp’ = 0.69) 

line has just died out, as the zero axial velocities at x = 0.017 and 0.02 m indicate. There are no 
vortices in the cylinder; however, the velocity profiles undergo rapid changes, from an almost uniform 
profile near the piston head (x = 0.026 m), through strong peaks near the cylinder wall (x  = 0.014- 
0.02 m) to strong peaks at the symmetry line close to the step plane. The agreement of predicted and 
measured velocities is again both qualitatively and quantitatively good. Discrepancies are only present 
for the radial velocity component close to the piston head. These discrepancies are no larger than the 
scatter of experimental data at some locations, although the discretization error might account for a few 
per cent disagreement at isolated peak locations. 

CONCLUSIONS 

The results of the analysis presented in the previous sections permit the following conclusions. 

1. The axisymmetric piston-driven unsteady flow in a pipe with sudden expansion can be accurately 
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prehcted by using a conservative finite volume method with moving grids. It has been shown 
that the discretization errors in space are more critical than the temporal discretization errors and 
that even with second-order spatial discetization, very fine grids are necessary in order to reduce 
the discretization error below 1% of the characteristic mean velocity. Calculations performed 
with a grid consisting of 256 x 80 CVs were found to be accurate enough to allow for an 
analysis of the flow features and comparison with experimental data, which showed good 
agreement. 

2. In order to be able to estimate the discretization errors, calculations should be performed on a 
sequence of systematically refined grids. The errors are then proportional to the difference in 
solutions on two consecutive grids. It is also necessary to distinguish between the temporal and 
spatial discretization errors; this can be done by performing grid or step size dependence analysis 
while keeping the time step or spatial grid constant respectively. Spatial discretization errors in 
the present solution were in the largest part of the solution domain lower than 1%. Temporal 
discretization errors were found to be one order of magnitude lower than the spatial errors. 
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Figure 9. Comparison of computed and measured profiles of (a) axial and @) radial velocity components for exhaust stroke of 
first cycle and piston position xp = 26.876 mm (s; = 0.29) 

3. When the spatial variations of the dependent variables require fine numerical grids but the 
temporal variation allows for larger time steps, fully implicit schemes for time discretization 
become attractive. However, these methods are only efficient when the multigrid algorithm is 
used to reduce the number of outer iterations per time step. In this study 10-1 5 outer iterations on 
the finest grid were performed with the multigrid algorithms, whereas the classical single-grid 
algorithm needed over an order of magnitude more iterations. 

4. Analysis of axisymmetic piston-driven flow prediction shows good insight to the mean features 
of this class of flows and also indicates possible reasons for flow instabilities and cycle-to-cycle 
variations which occur at higher intake velocities. The velocity profiles with inflection points are 
prone to instabilities; another reason lies in the critical flow pattern near BDC and TDC, when 
some eddies disappear and new ones are formed. 

A more detailed study of the instability of piston-driven flows is under way using the same solution 
algorithm but a three-dimensional anlaysis. It is expected that the experimentally observed’ ’ cycle-to- 
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Figure 9b. 

cycle variations can be reproduced and that a detailed analysis of the flow at critical stages will provide 
m h e r  clarification of the phenomena leading to flow instabilities. 
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